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In this paper, we use a partition of the links of a network in order to uncover its community structure. This
approach allows for communities to overlap at nodes so that nodes may be in more than one community. We
do this by making a node partition of the line graph of the original network. In this way we show that any
algorithm that produces a partition of nodes can be used to produce a partition of links. We discuss the role of
the degree heterogeneity and propose a weighted version of the line graph in order to account for this.
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I. INTRODUCTION

Finding hidden patterns or regularities in data sets is a
universal problem that has a long tradition in many disci-
plines from computer science �1� to social sciences �2�. For
example, when the data set can be represented as a graph,
i.e., a set of elements and their pairwise relationships, one
often searches for tightly knit sets of nodes usually called
communities or modules. The identification of such commu-
nities is particularly crucial for large network data sets that
require new mathematical tools and computer algorithms for
their interpretation. Most community detection methods find
a partition of the set of nodes where most of the links are
concentrated within the communities �3,4�. Here the commu-
nities are the elements of the partition and so each node is in
one and only one community.

A popular class of algorithms seeks to optimize the modu-
larity Q of the partition of the nodes of a graph G �5–9�. The
simplest definition of modularity for an undirected graph,
i.e., the adjacency matrix A is symmetric, is �10�

Q�A� =
1

W
�

C�P
�

i,j�C
�Aij −

kikj

W
� , �1�

where W=�i,jAij and ki=� jAij is the degree of node i. The
indices i and j run over the N nodes of the graph G. The
index C runs over the communities of the partition P. Modu-
larity counts the number of links between all pairs of nodes
belonging to the same community and compares it to the
expected number of such links for an equivalent random
graph in which the degree of all nodes has been left un-
changed. By construction �Q��1 with larger Q indicating
that more links remain within communities then would be
expected in the random model. Uncovering a node partition
that optimizes modularity is therefore likely to produce use-
ful communities.

This node partitioning approach has, however, the draw-
back that nodes are attributed to only one community, which
may be an undesirable constraint for networks made of
highly overlapping communities. This would be the case, for
instance, for social networks, where individuals typically be-
long to different communities, each characterized by a cer-
tain type of relation, e.g., friendship, family, or work. In
scientific collaboration networks �for example �11��, authors
may belong to different research groups characterized by dif-

ferent research interests. Such intercommunity individuals
are often of great interest as they broker the flow of informa-
tion between otherwise disconnected contacts, thereby con-
necting people with different ideas, interests, and perspec-
tives �12,13�.

Only a few alternative approaches have been proposed in
order to uncover overlapping communities of nodes, for ex-
ample �14–16�. Our suggestion is to define communities as a
partition of the links rather than of the set of nodes. A node
may then have links belonging to several communities and in
this it belongs to several communities. The central node in a
bow tie graph is a simple example; see Fig. 1. This link
partition approach should be especially efficient in situations
when the nodes of a network are connected by different types
of links, i.e., in situations where the nodes are heterogeneous
while the links are very homogeneous. In the case of the
social network mentioned above, this would occur when the
friendship network and work network of individuals only
have a very small overlap.

This paper is organized as follows. In Sec. II, we review a
definition of modularity that uses the statistical properties of
a dynamical process taking place on the nodes of a graph. In
Sec. III, we propose three dynamical processes taking place
on the links of the graph and derive their corresponding
modularities, now defined for a partition of the links of a
network. To do so, we make connections to the concept of a
line graph and with the projection of bipartite networks. In
Sec. IV, we optimize the three modularities for some ex-
amples and interpret our results. In Sec. V we conclude and
propose ways to improve our method.

FIG. 1. �Color online� By partitioning the links of a network
into communities, one may uncover overlapping communities for
the nodes by noting that a node belongs to the communities of its
links. In this toy example, a meaningful partition consists in divid-
ing the links into two groups �straight blue lines and the dashed red
lines�. In that case, the central node belongs to the two communities
because it is at the interface between these link communities.
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II. DYNAMICAL FORMULATION OF MODULARITY

To motivate our link partition quality function, let us first
consider how to interpret the usual modularity Q �Eq. �1�� in
terms of a random walker moving on the nodes �17,18�. Sup-
pose that the density of random walkers on node i at step n is
pi;n and the dynamics is given by

pi;n+1 = �
j

Aij

kj
pj;n. �2�

From now on, we will only consider networks that are undi-
rected �the adjacency matrix is symmetric�, connected �there
exists a path between all pairs of nodes�, nonbipartite �it is
not possible to divide the network into two sets of nodes
such that there is no link between nodes of the same set�, and
simple �without self-loops nor multiple links�. If the first
three conditions are respected, it is easy to show �19� that the
stationary solution of the dynamics is generically given by
pi

�=ki /W.
Let us now consider a node partition P of the network and

focus on one community C�P. If the system is at equilib-
rium, it is straightforward to show that the probability a ran-
dom walker is in C on two successive time steps is

�
i,j�C

Aij

kj

kj

W
, �3�

while the probability of finding two independent walkers at
nodes in C are

�
i,j�C

kikj

�W�2 . �4�

This observation allows us to reinterpret Q as a summation
over the communities of the difference of these two prob-
abilities. This interpretation suggests natural generalizations
of modularity allowing to tune its resolution. Indeed, Q is
based on paths of length one but it can readily be generalized
to paths of arbitrary length as

R�A,n� =
1

W
�

C�P
�

i,j�C
��Tn�ijkj −

kikj

W
� , �5�

where Tij =Aij /kj. This quantity is called the stability of
the partition �17�. Because kj is an eigenvector of eigen-
value one of T, one can show that the symmetric matrix

X�n�ij = �Tn�ijkj corresponds to a time-dependent graph where
the degree of node i is always equal to ki. Therefore R�A ,n�
can be interpreted as the modularity of X�n�ij, a matrix that
connects more and more distant nodes of the original adja-
cency matrix A as time n grows �18�. It can be shown that
optimizing Eq. �5� typically leads to partitions made of larger
and larger communities for increasing times and that the op-
timal partition when n→� is made of two communities
�17,18�.

III. LINK PARTITION

A. Random walking the links

The above discussion suggests that we should look at a
random walker moving on the links of network in order to
define the quality of a link partition. Such a walker would
therefore be located on the links instead of the nodes at each
time n and move between adjacent links, i.e., links having
one node in common. In the case of the random walk on the
nodes �Eq. �2��, a walker at node i follows one of its links
with probability 1 /ki, i.e., all links are treated equally. How-
ever, a link between nodes i and j is characterized by two
quantities ki and kj, so a random walk on the links is more
subtle. In the following, we will focus on two different types
of dynamical processes that account differently for the de-
grees ki and kj �see Fig. 2�.

In the first process, a walker jumps with the same prob-
ability 1 / �ki+kj −2� to one of the links leaving i and j. When
ki�kj, the walker goes with a different probability through i
or j, and we therefore call this process a “link-link random
walk” �see Fig. 2�a��.

In the second process, a walker jumps to one of the two
nodes to which it is attached, say i, then moves to a link
attached to that node �excluding the link it came from�. Thus
it will arrive at a link leaving node i with a probability
1 / �2�ki−1��, and similarly it will arrive at a link attached to
the other node j with probability 1 / �2�kj −1��. We will refer
to this as a “link-node-link random walk” �see Fig. 2�b��.
This process is well defined unless the link is a leaf, namely,
one of its extremities has a degree 1, say i. In that case, the
walker will jump with a probability 1 / �kj −1� to one of the
links leaving j.

These two types of dynamics are different in general ex-
cept if the degrees at the extremities i and j of each link are

FIG. 2. �Color online� Illustration of the two types of random walk considered in this paper. In both cases, the walkers are situated on the
links of a graph, here starting from the central red dashed link. In �a� the link-link random walk is shown where the walker jumps �the green
dashed arrows� to any of the adjacent links with equal probability. In �b� a link-node-link random walk is illustrated. In this case the walker
moves first to a neighboring node with equal probability and then moves on to a new link chosen with equal probability from those new links
incident at the node.
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equal. In the case of a connected graph, this condition is
equivalent to demanding that the graph is regular, i.e., the
degree of all the nodes is a constant. When this condition is
not respected, the link-link random walk favors the passage
of the walker through the extremity having the largest de-
gree. The difference between the two processes will be maxi-
mal when the network is strongly disassortative, namely,
when links typically relate nodes with very different degrees
�20�.

B. Projecting the incidence matrix

1. Bipartite structure

In order to study these two types of random walk more
carefully, it is useful to represent a network G by its inci-
dence matrix B. The elements Bi� of this N�L matrix �L is
the number of links� are equal to 1 if link � is related to node
i and 0 otherwise. The incidence matrix of G may be seen as
the adjacency matrix of a bipartite network I�G� �see Fig.
3�b��, the incidence graph1 of G where the two types of
nodes correspond to the nodes and the links of the original
graph G. By construction, all the information of the graph is
incorporated in B. For instance, the degree ki of a node i and
the number of nodes k� attached to a link � �always equal to
2� are given by

ki = �
�

Bi�, k� = �
i

Bi�. �6�

The N�N adjacency matrix A of the graph G can also be
obtained

Aij = �
�

Bi�Bj� − ki�ij . �7�

This operation �7� can be interpreted as a projection of the
bipartite incidence graph I�G� onto the unipartite network G
�21,22�. In a similar way, an adjacency matrix for the links
can be obtained by projecting the bipartite network onto its
links. In the following, we will focus on two standard types
of projection that, as we will show, are directly related to the
two random walks introduced above.

2. Line graph

The simplest way to project a bipartite graph consists of
taking all the nodes of one type for the nodes of the projected
graph. A link is added between two nodes in this projected
graph if these two nodes had at least one node of the other
type in common in the original bipartite graph. Operation �7�
is of this type. When applied to the links � of the graph G,
the second type of vertex in the bipartite incidence graph
I�G�, it leads to the L�L adjacency matrix C whose ele-
ments are

C�� = �
i

Bi�Bi��1 − ���� . �8�

It is easy to verify that this adjacency matrix is symmetric
and that its elements are equal to 1 if two links have one
node in common, and zero otherwise. It is interesting to note
that this adjacency matrix corresponds to another well-
known graph, usually called the line graph of G �23� and
denoted by L�G� �see Fig. 3�c��. It is a simple graph with L
nodes. By construction, each node i of degree ki of the origi-
nal graph G corresponds to a ki fully connected clique in
L�G�. Thus it has �iki�ki−1� /2=O�	k2
N� links. Line graphs
have been studied extensively and among their well-known
properties, Whitney’s uniqueness theorem states that the
structure of G can be recovered completely from its line

1An incidence graph is usually defined in terms of the incidence of
a set of lines with a set of points in a Euclidean space of finite
dimension. Here we have a special case where we embed our graph
G in some Euclidean space of no particular interest and each link of
G is a line that always intersects with exactly two points.

FIG. 3. �Color online� The information of the bow tie graph in �a�, as encoded by the adjacency matrix A of Eq. �7�, has other equivalent
graph representations. In �b� the incidence matrix �B of Eq. �7�� of the bow tie is shown as a bipartite network, the incidence graph I�G�. The
line graph of the bow tie, L�G�, is the unweighted version of the graph labeled �c�,�d� with adjacency matrix C of Eq. �8�. The weighted
version in diagram �c�,�d� has an adjacency matrix D of Eq. �11�. The weighted line graph with self-loops labeled �e� has an adjacency matrix
E of Eq. �14�. Circles represent entities that correspond to nodes of the original graph, while triangles come from links in the original graph.
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graph L�G� for any graph other than a triangle or a star
network of four nodes �24�. This result implies that project-
ing the incidence matrix onto L�G� does not lead to any loss
of information from the network structure. This is a remark-
able result that is not generally true when projecting generic
bipartite networks.

It is now straightforward to express the dynamics of link-
link random walk �Fig. 2�a�� in terms of the projected adja-
cency matrix C,

p�;n+1 = �
�

C��

k�

p�;n. �9�

Now p�;n is the density of random walkers on link � at step
n, k�=��C��= �ki+kj −2� and where i and j are the extremi-
ties of �. This dynamical process therefore only depends on
the sum of the degrees i and j. The stationary solution
is found to be p�

� =k� /W, where W=���C��. When G is
simple, then W=�i�ki−1�ki. By reapplying the steps de-
scribed in �18�, it is now straightforward to derive a quality
function for the link partition P of the graph G,

Q�C� =
1

W
�

C�P
�

�,��C
�C�� −

k�k�

W
� . �10�

This is just the usual modularity �1� for a graph with adja-
cency matrix C.

As we noted, a single node i in G leads to a connected
clique of ki�ki−1� /2 links in the line graph L�G�. This seems
to suggest that the line graph L�G� gives too much promi-
nence to the high degree nodes of the original graph G. Our
response is to define a weighted line graph whose links are
scaled by a factor of O�1 /ki�.

3. Weighted line graph

In order to derive the quality of a link partition associated
to the link-node-link random walk, it is useful to project the
incidence matrix in a different way and to define another
graph D�G� with a symmetric adjacency matrix given by

D�� = �
i,ki	1

Bi�Bi�

ki − 1
�1 − ���� . �11�

This weighted line graph has the intuitive property that the
degree k�=��D�� of a link � is equal to 2 �a link always has
two extremities� unless � is a leaf in G �then k�=1 except for
one trivial case�. For example this weighted line graph of the
bow tie network is shown in Fig. 3�d�. Only if G is regular
will this weighted line graph D�G� be equivalent �up to an
overall scale� to the original unweighted line graph L�G�.

This construction is a well-known method for projecting
bipartite networks. For instance in the case of collaboration
networks �11� the �ki−1� normalization is justified by the
desire that two authors should be less connected if they
wrote a joint paper with many co-authors than a paper with
few authors.

This weighted line graph allows us to write the dynamics
of the link-node-link random walk in a natural way

p�;n+1 = �
�

D��

k�

p�;n �12�

and, by reusing the above arguments to define another qual-
ity function for the link partition P of a graph

Q�D� =
1

W
�

C�P
�

�,��C
�D�� −

k�k�

W
� , �13�

where W=���D��=2L−Lleaf is twice the number of links L
minus the number of leaves in the original graph G, Lleaf.
Again, this is the same functional form as the usual modu-
larity, Q�A� of Eq. �1�, only the adjacency matrix has
changed.

C. Projection of a node random walk

The random walks proposed in the previous sections have
been defined on the line graph and therefore consist of walk-
ers moving among adjacent links of the original graph G.
However, such processes cannot be related to the original
random walk �3� on the nodes of G, because a walker mov-
ing on links can pass at two subsequent steps through the
same node of G while such self-loops are forbidden in Eq.
�3�. This observation suggests an alternative approach where
the dynamics would be driven by the original random walk
�3� but would be projected on the links of the network. To do
so, let us assume that a walker has not moved yet and is
located at node i. In that case, it is reasonable to assume that
all the neighboring links of i are connected by a weight 1 /ki.
The corresponding adjacency matrix E for the links is there-
fore given by

E�� = �
i,ki	0

Bi�Bi�

ki
�14�

and is based on an unconstrained unbiased two-step random
walk on the bipartite incidence graph I�G� 2. Unlike our pre-
vious line graph constructions, C of Eq. �8� and D of Eq.
�11�, this weighted line graph E�G� has self-loops. It is illus-
trated for the bow tie graph in Fig. 3�e�. All nodes � in E�G�
have strength 2, ��E��=2, reflecting the fact that the links in
the original graph G all have two ends.

E is constructed when a walker is located on a node and
has not moved yet. The motion of the walker according to
Eq. �3� generates a new adjacency matrix, E1, defined as

2One might also try to argue that since an undirected link is both
incoming and outgoing, we might deem it appropriate to allow � to
� transitions in the link-link walk of Fig. 2�a�. That is, we could
define an unweighted line graph with self-loops with adjacency ma-

trix C̃��=�iBi�Bi�. Since it differs from the standard unweighted
line graph L�G� only by the addition of a self-loop to every node �,
this can be interpreted within the scheme of �29� who add self-loops
to control the number and size of communities found.
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E1;�� = �
i,ki	0

Bi�AijBi�

kikj
, �15�

where we note that E1=EE−E. The corresponding graph is
still regular with k�=��E1;��=2, and it is again weighted
with self-loops. The quality function associated with this dy-
namics is simply

Q�E1� =
1

W
�

C�P
�

�,��C
�E1;�� −

4

W
� , �16�

where again W=2L.
This quality function is particularly interesting because it

has a simple relationship to the modularity of the original
graph, Q�A� of Eq. �1�. To show this let us assign a weight
V�c representing the strength of the membership of link � in
community c. Such weights may be defined and constrained
in many ways. For instance, in a link partition we have
V�cV�d=�cd for any �, i.e., every link � belongs to just one
community. In order to translate V�c into a community struc-
ture on the nodes, it is natural to use the incidence matrix B
of Eq. �7� and to define the rectangular matrix Vic through

Vic = �
�

Bi�

ki
V�c. �17�

If V�c is a link partition then the projected node community
structure Vic is simply the fraction of links in community c
incident at node i. Also if �cV�c=1 then so is �cVic=1.

Now using the definition of the adjacency matrix in Eq.
�7�, we find that the modularity of the original graph G for
some node community Vic is

Q�E1;�V�c�� =
1

W
�
c,d

�
�,�

V�c�E1;�� −
4

W
�V�d �18�

=
1

W
�
c,d

�
i,j

Vic�Aij −
kikj

W
�Vjd �19�

=Q�A;�Vic�� . �20�

Thus finding modularity optimal link partitions of the line
graph with adjacency matrix E1 of Eq. �15� is equivalent to
the optimization of the modularity of the original graph but
with a different constraint on the node community Vic from
that imposed when finding node partitions.

IV. EMPIRICAL ANALYSIS

A. Methodology

In the previous sections, we have proposed three quality
functions Q�C�, Q�D�, and Q�E1� for the partition of the
links of a network G. Each represents a different dynamical
process and therefore explores the structure of the original
graph G in a different way. In order to tune the resolution of
the optimal partitions, it is straightforward to define the sta-
bilities R�C ,n�, R�D ,n�, and R�E1 ,n� of the three processes
by generalizing the concept of modularity to paths of arbi-
trary length �see Sec. II�. The optimal partitions of these

quality functions can be found by applying standard modu-
larity optimization algorithms to the corresponding line
graphs. In this paper, we have used two different algorithms
�7,8� and have verified that both algorithms give consistent
results.

As a first check, let us look at the bow tie graph of Fig. 1.
The optimization of the three quality functions Q�C�, Q�D�,
and Q�E1� lead to the expected partition into two triangles,
with the values Q�C�=0.1, Q�D�=0.278, and Q�E1�=0.167.
In this case, the central node belongs equally to the two link
communities, a situation that is a far superior way to split the
network than a node partition. The best node partition gives
Q�A�=0.111 when three nodes in one triangle form one
community and the remaining two nodes form a second com-
munity.

In order to compare node partitions and link partitions in
the following, we will use the idea of a “boundary link” and
a “boundary node.” A boundary link of a node partition is
one that connects two nodes from different communities. We
will then define a boundary node of a link partition to be a
node that is connected to links from more than one link
community. Thus the central node of the bow tie graph is a
boundary node.

B. Karate club

A less contrived graph is the Karate club of Zachary �2�,
which is made of 34 members. Historically this split into two
distinct factions. It is standard to compare the partition pro-
duced by a community detection method to the actual split of
the club. The node partition having the largest value of
modularity Q�A�=0.420 contains four communities, but the
resolution can be lowered by optimizing the stability R�A ,n�
for larger values of n. When n is large enough, the optimal
partition is always made of two communities �see Fig. 4�,
e.g., R�A ,11�=0.078, which agree with Zachary’s partition
into “sink” and “source” communities �2� using the Ford-
Fulkerson binary community algorithm �25�.

The link partitions found by optimizing Q�C�=0.5,
Q�D�=0.53, and Q�E1�=0.36 are shown in Fig. 5. They are,
respectively, made of four, seven, and three communities.
These three partitions are consistent with the historical two-
way split of the network, as the boundary links of the two-
way partition of Fig. 4 are always connected to a boundary
node of a link partition. In general, however, the three opti-
mal partitions are as different as their corresponding dynami-
cal processes are. The most striking difference is observed
around node 1. In the node partition optimizing Q�A�, this
node is connected to several boundary links and connects the
community of nodes �5,6,7,11,17� to the rest of the network.
Such a position is consistent with the link partitions obtained
from Q�D� and Q�E1�, but not with the link partition opti-
mizing Q�C�. In this latter case, one observes that node 1 is
rather the focus of one of the link communities on the left-
hand side in Fig. 5. This difference originates from the high
degree of node 1, which implies that a link-link random walk
is biased to pass through this node �see Fig. 2� and therefore
heavily connects its adjacent links. This is a general problem
of the unweighted line graph C that gives too much emphasis
to high degree nodes �also noted in �27�� and therefore tends
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to produces communities centered around hubs. Such a prob-
lem does not take place for the weighted line graphs D and
E1, and in both these cases node 1 is a boundary node, part
of several communities. The main difference between the
optimal partitions of Q�D� and Q�E1� is the number of the
communities in each, as expected because the line graph E1
connects more distance links of the original graph than D.
Let us also note that the optimal partition of Q�E1� resembles
very much the one of Q�A�, as suggested by Eq. �20�.

Before concluding, let illustrate how longer random walks
can be used to tune the resolution of the link partition. We
focus on the weighted line graph D, whose optimal partition
into seven communities is difficult to compare against the
standard two and four community node partitions of Fig. 4.
Let us therefore focus on the stability R�D ,n�, which is
based on paths of length n of a random walker on D. As
expected, larger and larger communities are uncovered when
n is increased and, when n is large enough, we obtain a two
way link partition �see Fig. 6� that shows a perfect match
with the node partition shown in Fig. 4.

C. Word associations

As a final example, let us use the University of South
Florida Free Association Norms data set �28� to create a
simple network3 in the manner of �14�. We obtain a link
partition by optimizing the modularity for the weighted line
graph D of Eq. �11� but where the null model term
�k�k�� /W2 has been scaled by a factor of 10.0 in order to
control the resolution �9� and in this case obtain 321 com-
munities in the whole network. The corresponding quality
function can be seen as a linear approximation of the stabil-
ity R�D ,n� �18�. It is easier to optimize for large networks.

In Fig. 7 we show part of the network near the word
“bright” which is part of 11 communities4. The topology of
our communities is much less constrained than those of
k-clique percolation �14�, which means we can pick out a
wider range of structures. There are some tight cliquelike
subsets, e.g., the names of the planets. At the other extreme
the method finds more treelike structures such as the se-
quence “lit-on-switch-lever-handle,” which is the backbone
of another community linked to bright. On the other hand
this flexibility in the structure can produce a confusing pic-
ture since many words are members of several communities
though mostly having just one or two links per community.
For instance for the word “bright,” it is linked to eight of its
11 communities by just one link. However one can exploit
this feature to start to define strength of membership in dif-
ferent communities. For instance for visualization, we have
found it useful to view only those words that have a large
number of links within one community, as in Fig. 7.

V. DISCUSSION

When describing a network, there seems to be a natural
tendency to put the emphasis on its nodes whereas a graph is
both a set of nodes and a set of links. It is therefore not
surprising that node partitioning has been studied extensively
in recent years while link partitioning has been overlooked
so far. In this paper, we have shown that the quality of a link

3We take the sum of the two forward strengths of all pairs of
normed word and add a link only if the total is greater than 0.025.
We end up with 5018 words connected by 58 536 links and from
this a line graph with 1 266 910 links is created.

4The 11 communities that contain “bright” are well characterized
by the following subsets of words: �“brave,” “bold,” “daring”�,
�“bright,” “light,” “sunshine”�, �“gone,” “fade,” “dim”�, �“power,”
“electric,” “lightning,” “flash”�, �“brain,” “intelligence,” “bril-
liant”�, �“great,” “wonderful,” “gifted”�, �“pen,” “paper,” “high-
light”�, �“handle,” “lit,” “on,” “switch,” “lever”�, �“cloudy,” “gray,”
“shiny,” “sunny”�, �“space,” “sky,” “moonlight,” “stars”�, �“as-
sume,” “illusion,” “imagination,” “vivid”�. However “bright” has
16 of its 29 links in the community containing “sunshine” and
“light” with just a single link to eight of its 11 communities.

FIG. 4. �Color online� Optimal node partitions for the unweighted Karate club data of Zachary, notation as in �2�. On the left is the
partition into two communities made by Zachary �2� using the Ford-Fulkerson binary community algorithm �25�. It is also produced by
optimizing R�A ,11� of Eq. �5�. The right-hand figure shows the node partition with optimal Q�A�=0.420 �26�, which contains four
communities.
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partition can be evaluated by the modularity of its corre-
sponding line graph. We have highlighted that optimizing the
modularity of some of our weighted line graphs uncovers
meaningful link partitions. Our approach has several advan-
tages. A key criticism of the popular node partitioning meth-
ods is that a node must be in one single community whereas
it is often more appropriate to attribute a node to several
different communities. Link partitioning overcomes this
limitation in a natural way. Moreover, the equivalence of a
link partition of a graph G with the node partitioning of the
corresponding line graph L�G� means that one can use an
existing node partitioning code with only the expense of pro-
ducing a line graph transformation and an O�	k2
 / 	k
� in-
crease in memory to accommodate the larger line graph.

Even the memory cost can be reduced to be O�1� since we
have shown our link partitioning is equivalent to a process
occurring on the links of the original graph G, so a line graph
need not be produced explicitly.

Our method can be seen as a generalization of the popular
k-clique percolation �14�, which finds sets of connected k
cliques. By way of comparison we find collections of two
cliques, which are more densely connected than expected in
an equivalent null model. Thus the link partitioning of our
paper can be seen as an extension of two-clique percolation
that allows for the uncovering of finer modules, i.e., two-
clique percolation trivially uncovers connected components.
An interesting generalization would be to apply our approach
to the case of triangles, four cliques, etc. To do so, one has to
replace the incidence matrix �relating nodes and links� by a
more general bipartite graph, representing the membership of

FIG. 5. �Color online� The optimal link partitions of �c� Q�C�,
�d� Q�D�, and �e� Q�E1� for the Karate club. They contain four,
seven, and three communities, respectively. The two smallest com-
munities in the center of �d� consist of the links: �a� ��3,10�,
�10,34��, �b� ��0,20�, �1,20�, �2,20��.

FIG. 6. �Color online� Optimal link partition into two commu-
nities of the stability R�D ,10� of the Karate club.

FIG. 7. �Color online� The simple graph created from the South
Florida Free Association Norms data �28�, in the manner of �14�.
The link partition shown is produced by optimizing a modified ver-
sion of the modularity Q�D� where the null model factor was
10.0� �k�k�� /W2. This controls the number of communities found
�9�. The subgraph shown contains the word “bright” along with
nodes that have at least 90% of their links in one of the communi-
ties connected to “bright.”
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nodes in a clique of interest. Our random walk analysis in
terms of this bipartite graph would then proceed in the same
fashion and should allow to uncover finer modules than those
obtained by k-clique percolation.

All our expressions also hold for the case of weighted
networks. Even multiedges can be accommodated if we start
from the incidence matrix, B. However the beauty of our
approach is that any type of graph analysis, be it community
detection or something else, can be applied to a line graph
rather than the original graph. In this way, one can view
a network from a completely different angle yet use well

established techniques to obtain fresh information about its
structure.
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